Search results for "Semiflexible polymers"
showing 4 items of 4 documents
Semiflexible Polymers in the Bulk and Confined by Planar Walls
2016
Semiflexible polymers in solution under good solvent conditions can undergo an isotropic-nematic transition. This transition is reminiscent of the well-known entropically-driven transition of hard rods described by Onsager’s theory, but the flexibility of the macromolecules causes specific differences in behavior, such as anomalous long wavelength fluctuations in the ordered phase, which can be understood by the concept of the deflection length. A brief review of the recent progress in the understanding of these problems is given, summarizing results obtained by large-scale molecular dynamics simulations and density functional theory. These results include also the interaction of semiflexib…
Blends of Semiflexible Polymers: Interplay of Nematic Order and Phase Separation
2021
Mixtures of semiflexible polymers with a mismatch in either their persistence lengths or their contour lengths are studied by Density Functional Theory and Molecular Dynamics simulation. Considering lyotropic solutions under good solvent conditions, the mole fraction and pressure is systematically varied for several cases of bending stiffness κ (the normalized persistence length) and chain length N. For binary mixtures with different chain length (i.e., NA=16, NB=32 or 64) but the same stiffness, isotropic-nematic phase coexistence is studied. For mixtures with the same chain length (N=32) and large stiffness disparity (κB/κA=4.9 to 8), both isotropic-nematic and nematic-nematic unmixing oc…
Densely packed semiflexible macromolecules in a rigid spherical capsule
2018
The ordering of semiflexible polymers with persistence length lp and contour length L confined in a sphere of radius R is studied by molecular dynamics simulations of a coarse-grained model. Monomer densities are chosen where the corresponding bulk lyotropic solution or melt is a well-ordered nematic, and purely repulsive walls of the rigid confining sphere are considered. It is found that polymers close to the walls are bent according to the curvature of the confining spheres with all their monomers in a few layers parallel to the sphere surface, whereas the remaining macromolecules closer to the sphere center have one chain end and their center of mass far from the surface. The latter cha…
Shear-Thinning in Oligomer Melts—Molecular Origins and Applications
2021
We investigate the molecular origin of shear-thinning in melts of flexible, semiflexible and rigid oligomers with coarse-grained simulations of a sheared melt. Entanglements, alignment, stretching and tumbling modes or suppression of the latter all contribute to understanding how macroscopic flow properties emerge from the molecular level. In particular, we identify the rise and decline of entanglements with increasing chain stiffness as the major cause for the non-monotonic behaviour of the viscosity in equilibrium and at low shear rates, even for rather small oligomeric systems. At higher shear rates, chains align and disentangle, contributing to shear-thinning. By performing simulations …